Now pure TypeScript — zero native dependencies

The vector database that
runs anywhere

Pure TypeScript vector search. No native bindings. No FAISS. No compile step.
Works on Node, Deno, Bun, Edge, Workers, and Browser.

Start Building
$ npm install vectorvault Copied!
Node.js Deno Bun Cloudflare Workers Browser
index.ts TypeScript
 1import { Vault } from 'vectorvault';
 2
 3const vault = new Vault({ vault: 'my_knowledge', local: true });
 4
 5vault.add('Mitochondria is the powerhouse of the cell');
 6vault.add('Neural networks mimic biological brains');
 7await vault.getVectors();
 8
 9const results = await vault.getSimilar('How do cells produce energy?');
10console.log(results[0].data);
11// → "Mitochondria is the powerhouse of the cell"
0
Runtime dependencies
<3ms
Search latency (1K vectors)
11
Lines to semantic search
MIT
Open source license

Everything you need.
Nothing you don't.

Vector search should be simple. Add data, search it semantically. VectorVault gives you a complete vector database in a single import — no infrastructure, no config files, no boilerplate.

Pure TypeScript

No native bindings. No C++ compilation. No FAISS. Runs anywhere JavaScript runs — Node, Deno, Bun, Cloudflare Workers, even the browser.

💾

Local-First

Works completely offline. Your vectors stay on your machine. No API keys required for local mode. Full persistence to disk with save/load.

🔍

Semantic Search

Find meaning, not just keywords. Add documents in any order and search by concept. Cosine similarity ranking with metadata filtering.

📦

Zero Dependencies

Check the package.json — "dependencies": {}. Nothing to install, nothing to break. The entire library is self-contained TypeScript.

✂️

Built-in Chunking

Don't pre-process your documents. splitText() handles chunking with configurable overlap. Load a book, split it, index it — done.

☁️

Cloud + Local

Develop locally, deploy to VectorVault Cloud. Same API, same code. Managed persistence, team collaboration, and production scaling.

The first vector database that's
actually portable

Every other vector library depends on native C++ bindings — FAISS, HNSWlib, Annoy. That means compile errors, platform headaches, and "works on my machine." VectorVault is pure TypeScript. It just works.

  • Deploy to Cloudflare Workers — no native bindings to compile
  • Run in the browser — client-side semantic search
  • Works on every OS — no node-gyp, no Docker, no hassle
  • Same API as VectorVault Python — verified identical results
  • Serverless-ready — cold starts in milliseconds, not seconds
package.json JSON
1{
2  "name": "vectorvault",
3  "version": "2.2.4",
4  "dependencies": {}
5}
6
7// That's it. Zero runtime deps.
8// Pure TypeScript. Nothing else.

Start building in minutes

From prototype to production with the same simple API. No config files, no setup scripts — just code.

quickstart.ts TypeScript
 1import { Vault } from 'vectorvault';
 2
 3// Create a vault — that's your vector database
 4const vault = new Vault({
 5  vault: 'my_knowledge',
 6  openaiKey: process.env.OPENAI_API_KEY,
 7  local: true
 8});
 9
10// Add data — text in, vectors out
11vault.add('The mitochondria is the powerhouse of the cell');
12vault.add('Photosynthesis converts sunlight to chemical energy');
13vault.add('DNA stores genetic information in nucleotide sequences');
14
15// Generate embeddings & persist
16await vault.getVectors();
17await vault.save();
18
19// Search by meaning, not keywords
20const results = await vault.getSimilar('How do cells get energy?');
21console.log(results[0].data);
22// → "The mitochondria is the powerhouse of the cell"
documents.ts TypeScript
 1import { Vault } from 'vectorvault';
 2import { readFileSync } from 'fs';
 3
 4const vault = new Vault({
 5  vault: 'research_papers',
 6  openaiKey: process.env.OPENAI_API_KEY,
 7  local: true
 8});
 9
10// Load and chunk a document
11const book = readFileSync('the-prince.txt', 'utf-8');
12const chunks = vault.splitText(book, 100, 500);
13
14// Index every chunk with metadata
15for (const chunk of chunks) {
16  vault.add(chunk, { source: 'the-prince.txt' });
17}
18
19await vault.getVectors();
20await vault.save();
21
22console.log(`Indexed ${chunks.length} chunks`);
23// → "Indexed 264 chunks"
rag.ts TypeScript
 1import { Vault } from 'vectorvault';
 2
 3// Load your existing vault
 4const vault = new Vault({
 5  vault: 'company_docs',
 6  openaiKey: process.env.OPENAI_API_KEY,
 7  local: true
 8});
 9
10// Retrieve relevant context
11const query = 'What is our refund policy?';
12const results = await vault.getSimilar(query, 5);
13
14// Build context for your LLM
15const context = results
16  .map(r => r.data)
17  .join('\n\n');
18
19// Feed to any LLM
20const response = await fetch('https://api.openai.com/v1/chat/completions', {
21  method: 'POST',
22  headers: { 'Authorization': `Bearer ${process.env.OPENAI_API_KEY}` },
23  body: JSON.stringify({
24    model: 'gpt-4',
25    messages: [{
26      role: 'user',
27      content: `Context:\n${context}\n\nQuestion: ${query}`
28    }]
29  })
30});
cloud.ts TypeScript
 1import { Vault } from 'vectorvault';
 2
 3// Same API — just point to the cloud
 4const vault = new Vault({
 5  vault: 'production_kb',
 6  user: 'you@company.com',
 7  apiKey: 'vv_your_api_key',
 8  local: false  // ← cloud mode
 9});
10
11// Everything works the same
12vault.add('New support article content...');
13await vault.getVectors();
14await vault.save();
15
16// Managed persistence, team sharing, production scaling
17const results = await vault.getSimilar('How to reset password?');
18
19// Access from your dashboard at vectorvault.io
20// Visual tools: Vector Flow, agent builder, analytics

How we stack up

VectorVault is the only library that gives you a complete vector database in pure TypeScript — no native deps, no framework lock-in.

Feature VectorVault Pinecone Chroma faiss-node Vectra LangChain
Pure TypeScript API only Python C++ bindings ~ Wrapper
Zero Dependencies
Works Offline ~
Edge / Workers
Persistence
Metadata
Built-in Chunking
Cloud Option ~
Free & Open Source MIT Paid

Simple architecture,
powerful results

Text goes in, vectors come out. Search by meaning, get ranked results with metadata. No graph databases, no complex infrastructure.

📝
Add Text
vault.add(text, meta)
🧮
Embed
OpenAI / Local
🔍
Search
Cosine similarity kNN

Start free.
Scale when ready.

The open source library is free forever. When you need managed infrastructure, team access, and visual tools — VectorVault Cloud has you covered.

Starter
$99/mo
For indie devs and small projects
  • 10 vaults
  • 100K vectors
  • Managed persistence
  • Dashboard access
Enterprise
$1,999/mo
For orgs with scale requirements
  • Unlimited everything
  • Persistent Agentic Runtime
  • Custom deployment
  • SLA guarantee
  • Dedicated support